Y Balance Test

Patient's full name: Mark Devlin

Date accomplished: July 22, 2022

Conductor's full name: Terry McDonagh

What you need:

- A flat surface (2×2 meters)
- Sticky tape
- Measuring tape

What your patient needs:

Comfortable lightweight clothing or fitness clothing

Instructions:

- Make a Y on the flat surface using the sticky tape. Make sure that each direction is six to eight-feet long. These directions are the anterior, posteromedial, and posterolateral. The posteromedial and posterolateral strips should be positioned 135 degrees from the anterior strip. The posteromedial and posterolateral strips should have a 45 degreeangle between them.
- First, have your patient pick one leg as their standing leg. This leg will be used to balance themself throughout half of this exercise.
- Tell them to get into standing position in the middle of the Y and have them place their hands on their hips.
- Once they are in a standing position, they will use their other leg to reach as far as they can within the range of each direction of the Y but without planting their reaching foot on the ground.

- They will have to repeat this three times per leg. Make sure to give them a trial run first, so technically, they will do this four times per leg.

They will fail if:

- If they hold onto something for balance
- If they lose their balance and fall
- They remove their hands from their hips
- If they plant their reaching foot on the ground
- If their standing foot's heel rises or moves at all

Y Balance Test Scoring

Here are the equations you need to follow:

1. Average Distance in Each Direction (cm)

(Reach $1+$ Reach $2+$ Reach 3$) \div 3=$ average distance in each direction (cm)
2. Relative (Normalized) Distance in Each Direction (\%)
(Average distance in each direction \div leg length) $\times 100=$ relative (normalized) distance in each direction (\%)

Example for $1 \& 2$ (Anterior direction):

1. $(57 \mathrm{~cm}+58 \mathrm{~cm}+59 \mathrm{~cm}) \div 3=58 \mathrm{~cm}$
2. $(58 \mathrm{~cm} \div 73 \mathrm{~cm}) \times 100=79.5 \%$

Input your scores here:

Average Distance in Each Direction (cm)

Direction	Right Leg	Left Leg
Anterior	57 cm	57 cm
Posteromedial	58 cm	58 cm
Posterolateral	59 cm	59 cm

Relative (Normalized) Distance in Each Direction (\%)

Direction	Right Leg	Left Leg
Anterior	78%	78%
Posteromedial	79.5%	79.5%
Posterolateral	81%	81%

Last, you need to calculate the Composite Reach Distance. Here's the equation for it:
$($ Normalized Anterior + Normalized Posteromedial + Normalized Posterolateral $) \div 3=$ Composite Reach Distance (\%)

Here's an example: $(79.5 \%+77 \%+78.5 \%) \div 3=78 \%$

Patient's Normalized Composite Score: 79.5% for both legs

Additional Comments

The reach is consistent with both legs. Will have them continue training and I will conduct this test every now and then to see if their reach is better and if they're able to maintain balance while doing so.

